Diffusion tensor brain imaging findings at term-equivalent age may predict neurologic abnormalities in low birth weight preterm infants.
نویسندگان
چکیده
BACKGROUND AND PURPOSE Low birth weight preterm infants are at high risk of brain injury, particularly injury to the white matter. Diffusion tensor imaging is thought to be more sensitive than conventional MR imaging for detecting subtle white matter abnormalities. The objective of this study was to examine whether diffusion tensor imaging could detect abnormalities that may be associated with later neurologic abnormalities in infants with otherwise normal or minimally abnormal conventional MR imaging findings. METHODS We prospectively studied 137 low birth weight (<1800 g) preterm infants. Neonatal conventional MR imaging and diffusion tensor imaging were performed near term-equivalent age before discharge, and neurologic development of the infants was later followed up at 18 to 24 months of age. RESULTS Among the preterm infants who were fully studied, 63 underwent normal conventional MR imaging. Three of these infants developed cerebral palsy, and 10 others showed abnormal neurologic outcome. Diffusion tensor imaging results for these infants showed a significant reduction of fractional anisotropy in the posterior limb of the internal capsule in neurologically abnormal infants (including those with cerebral palsy) compared with control preterm infants with normal neurologic outcomes. CONCLUSION These results suggest that neonatal diffusion tensor imaging may allow earlier detection of specific anatomic findings of microstructural abnormalities in infants at risk for neurologic abnormalities and disability. The combination of conventional MR imaging and diffusion tensor imaging may increase the predictive value of neonatal MR imaging for later neurologic outcome abnormalities and may become the basis for future interventional clinical studies to improve outcomes.
منابع مشابه
Neonatal diffusion tensor brain imaging predicts later motor outcome in preterm neonates with white matter abnormalities
BACKGROUND White matter (WM) abnormalities associated with prematurity are one of the most important causes of neurological disability that involves spastic motor deficits in preterm newborns. This study aimed to evaluate regional microstructural changes in diffusion tensor imaging (DTI) associated with WM abnormalities. METHODS We prospectively studied extremely low birth weight (ELBW; <1000...
متن کاملRole of diffusion tensor imaging as an independent predictor of cognitive and language development in extremely low-birth-weight infants.
BACKGROUND AND PURPOSE Diffusion tensor imaging at term can predict later development of cerebral palsy. Less is known about its ability to independently predict cognitive and language development in extremely preterm infants. The goals of the study were to investigate the following: 1) whether regional DTI measures at term-equivalent age in extremely low-birth-weight infants (birth weight, ≤10...
متن کاملPerinatal Clinical Antecedents of White Matter Microstructural Abnormalities on Diffusion Tensor Imaging in Extremely Preterm Infants
OBJECTIVE To identify perinatal clinical antecedents of white matter microstructural abnormalities in extremely preterm infants. METHODS A prospective cohort of extremely preterm infants (N = 86) and healthy term controls (N = 16) underwent diffusion tensor imaging (DTI) at term equivalent age. Region of interest-based measures of white matter microstructure - fractional anisotropy and mean d...
متن کاملNeonatal physiological correlates of near-term brain development on MRI and DTI in very-low-birth-weight preterm infants
Structural brain abnormalities identified at near-term age have been recognized as potential predictors of neurodevelopment in children born preterm. The aim of this study was to examine the relationship between neonatal physiological risk factors and early brain structure in very-low-birth-weight (VLBW) preterm infants using structural MRI and diffusion tensor imaging (DTI) at near-term age. S...
متن کاملTesting the Sensitivity of Tract-Based Spatial Statistics to Simulated Treatment Effects in Preterm Neonates
Early neuroimaging may provide a surrogate marker for brain development and outcome after preterm birth. Tract-Based Spatial Statistics (TBSS) is an advanced Diffusion Tensor Image (DTI) analysis technique that is sensitive to the effects of prematurity and may provide a quantitative marker for neuroprotection following perinatal brain injury or preterm birth. Here, we test the sensitivity of T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- AJNR. American journal of neuroradiology
دوره 24 8 شماره
صفحات -
تاریخ انتشار 2003